US 2003/0061404 Al

[0113] Alternatively, the components of the internal web
services management system 1600 may be components
added to a gateway module 300, 500, 900.

[0114] With another aspect of the gateway module 900, a
mechanism is described for returning a web service contract
to a third-party client application developer, which is tai-
lored to that specific developer, who, in turn, can tailor that
contract to different end users of that client application 15.
This increased flexibility is made possible by adding a layer
above the web services 25, such that the developer of those
web services, hereby referred to as the web service devel-
oper, does not need to be concerned with the process of
limiting access to third-party developers, who are program-
matic consumers of the web services 25, or to end users. This
extra layer, referred to as the gateway module 300, 500, 900,
can provide this flexibility at two different points in time,
one during development and the other at run-time.

[0115] In the web service commerce model, each web
service provider 20 hosts a set of web services 25 either to
be consumed over the web by an application publisher,
which in turn caters to the end user (i.e., consumer), or
another web services provider 20. The other web service
provider 20 may bind to those web services 25 across the
Internet, aggregate the web services 25 with their own set of
web services 25, or build upon the web services 25 to
provide more sophisticated web services 25 of their own.
Therefore, a chain of producer-consumer relationships exists
between the client application 15 and suppliers of the lowest
level web services 25. The scenario can be contrasted with
the traditional web application model, which is client-server
oriented, operating between the web browser on the end user
side and an application hosted on a particular web site.

[0116] FIG. 17 shows an example of a supply chain 1700
of producer-consumer relationships between the client appli-
cation 15 and web services providers 20. The supply chain
1700 comprises a client application 15, web services pro-
viders A-E 20, and web services A1-A9, B1-BS, C1-C5,
D1-D7, and E1-E825. The client application 15 uses web
services Al, A2, A4, A5, A6 and A825. In order to supply
web services A2 and A525, web services provider A uses
web services B1 and B325, respectively, from web services
provider B 20. In order to supply web service B125, web
services provider B 20 uses web service C425 from web
services provider C 20. In order to supply web service B325,
web services provider B 20 uses web service D325 from web
services provider D 20. In order to supply web service C425,
web services provider B 20 uses web service E325 from web
services provider E 20.

[0117] Each party in the supply chain 1700 would per-
ceivably have similar concerns. For example, each might
want to keep a database of its users, whether private or
corporate, and authenticate, authorize and bill them accord-
ingly. Since the technology for hosting of web services 25 is
relatively new, currently each entity in the supply chain
implements their own business logic to handle the afore-
mentioned concerns.

[0118] The following is a summary of how a web service
infrastructure 501, 1601 provides a chain of producer-
consumer relationships, according to an embodiment of the
invention. The gateway module 300, 500, 900 caters to the
common hosting, monitoring and administrative needs of
entities in the web service supply chain. This embodiment

Mar. 27, 2003

concerns the manner in which the gateway module 300, 500,
900 is architected and deployed. The embodiment includes
four features.

[0119] One feature is that the web services infrastructure
201, 501, 1601 includes one single logically coherent entity
(the gateway module 300, 500, 900) through which com-
munication between client applications 15 and hosted web
services 25 are routed. Tightly associated with it is any logic
that requires an understanding of how to handle events that
occurred within the web services 25. The centralization of
this logic is desirable to provide a comprehensive solution
for the web service provider 20.

[0120] Consider a typical scenario where the provider 20
needs to authenticate and authorize the client 15, log any
events that occur during any access, delegate the request to
the appropriate web service 25 as necessary and log any
events that occur during the process. At the least, an event
infrastructure should be provided to all modules of which
the infrastructure is aware, so that events can be sent and that
the infrastructure is aware of any module that need to be
notified of events. For example, the billing module 970 is
notified in the event that a web service 25 is being accessed
in order to do its job; and the authorization module 525
might want to notify that a login has failed. The modules
should either directly or indirectly be able to communicate
with each other. In an implementation where no such cen-
tralized infrastructure exists, it is difficult to add modules
that need to be notified of events. Thus a comprehensive
solution is not be practical without a centralized infrastruc-
ture, such as the web services infrastructure 201, 501.

[0121] Another feature is that the gateway module 300,
500, 900 is able to support off-the-shelf web services 25
as-is without need for adaptation. This is achieved by
monitoring low-level requests that comes through, executing
necessary logic and finally delegating to the appropriate web
service. This is beneficial to both web service providers 20
and web service authors, as they do not have to adapt their
logic in order for the services to be hosted, administered and
monitored.

[0122] Yet another feature is that the gateway module 300,
500, 900 is capable of masking the interfaces, addresses and
service description of each web service 25 to appear differ-
ent to client applications 15, which are able to access the
web services 25 as advertised in a transparent manner.

[0123] The masquerading of interface and service descrip-
tion is desirable to allow the web service provider 20 is to
be able to rename web services functionalities and add
parameters to their list of formal arguments. This capability
is particularly desirable for authentication and authorization
purposes. For example, the provider may want to assign the
client an authentication ID that once authenticated, requires
the client to access web service functions (or methods) with
the authentication ID. Here the gateway module 300, 500,
900 disguises these web service functions as having an extra
authentication ID parameter.

[0124] The masquerading of web service addresses serves
the above purposes. Another effect is that it allows the
service provider 20 to transparently aggregate services
offered by another web service provider 20 as though it is
one of its own.

[0125] A fourth feature is that the gateway module 300,
500, 900, along with all the accompanying functionality, is



